Skip to main content

APACHE STANBOL

Apache Stanbol - Website  - https://stanbol.apache.org/docs/trunk/tutorial.html

Stanbol helps to model a semantic relationship around NLP. Given a document it can find the main concepts like NER and gives link to these entities into DBPedia or Enterprise database.

The steps to follow to use Stanbol :

1) Use RESTFul aPI
2) Use Java API

Using RestFul API
----------------------------------

Step 1: export MAVEN_OPTS="-Xmx1024M -XX:MaxPermSize=256M"
Step 2 : svn co http://svn.apache.org/repos/asf/stanbol/trunk stanbol
Step 3:  mvn clean install (From downloaded stanbol directory)
Step 4: java -Xmx1g -jar stable/target/org.apache.stanbol.launchers.stable-{snapshot-version}-SNAPSHOT.jar (give your corresponding stanbol jar name)
Step 5 : Open http://localhost:8080in web browser
Step 6 : The stanbol options are available now. For ex. enhancer we can use as we click on that and give a text , we will get the corresponding NERs and its related DBPedia links.

Otherwise Step 7 : curl -X POST -H "Accept: text/turtle" -H "Content-type: text/plain" \ --data "The Stanbol enhancer can detect famous cities such as Paris and people such as Bob Marley." \ http://localhost:8080/enhancer

We will get the results.


Java API :
----------------
We can download and integrate Apache Stanbol Client API into Java from
https://github.com/zaizi/apache-stanbol-client .


after downloading the file and unzipping import into eclipse as java maven project. The we can use the enhance from the code below :

public class Sample {

public static void main(String[] args) throws StanbolServiceException, StanbolClientException  {
    Sample sample = new Sample();
    sample.SimpleContentEnhancement();
}

public void SimpleContentEnhancement() throws StanbolServiceException, StanbolClientException{
    final StanbolClientFactory factory = new StanbolClientFactory("http://localhost:8080");
    final Enhancer client = factory.createEnhancerClient();
    EnhancerParameters parameters = EnhancerParameters.
                builder().
                buildDefault("Paris is the capital of France");
    EnhancementStructure eRes = client.enhance(parameters);
    eRes.getBestAnnotations();

    for(TextAnnotation ta: eRes.getTextAnnotations()){
        System.out.println("********************************************");
        System.out.println("Selection Context: " + ta.getSelectionContext());
        System.out.println("Selected Text: " + ta.getSelectedText());
        System.out.println("Engine: " + ta.getCreator());
        System.out.println("Candidates: ");
        for(EntityAnnotation ea:eRes.getEntityAnnotations(ta))
              System.out.println("\t" + ea.getEntityLabel() + " - " + ea.getEntityReference());
    }
}
}



(U can refer to the actual documents in this link : -
https://github.com/zaizi/apache-stanbol-client )


The above pgm will give the output as : -



 

 


 




Comments

Popular posts from this blog

Converting DICOM images into JPG Format in Centos

Converting DICOM images into JPG Format in Centos I wanted to work with medical image classification using Deep learning. The Image data set was .dcm format. So to convert the images to jpg format following steps have performed. Used ImageMagick software. http://www.ofzenandcomputing.com/batch-convert-image-formats-imagemagick/ Installed ImageMagick in Centos by downloading the rom and installing its libraries : rpm -Uvh ImageMagick-libs-7.0.7-10.x86_64.rpm rpm -Uvh ImageMagick-7.0.7-10.x86_64.rpm After installation the the image which is to be converted is pointed in directory. Inside the directory executed the command: mogrify -format jpg *.dcm Now dcm image is converted to JPG format. 

TensorFlow for Beginners

TensorFlow - Image Recognition for New Data Set Tensorflow is an open source machine learning tool provided by Google. It provides various machine learning solutions. Most prominent use for Tensorflow is Computer vision. Here is a small post, about how you can do tensorflow training on your new image data set using python. First Install tensorflow in your system using following command (using python pip) sudo apt-get install python-pip python-dev #used for python 2.7 Then download the TensorFlow Inception model folder from https://github.com/tensorflow/models/tree/master/inception Save your new Image data under a folder named Images.. Inside the folder group each class of images into each separate folder(with corresponding names) Then change flowers_data.py in inception model according to your new data set Places to change:   def num_classes(self):     """Returns the number of classes in the data set."""     re...